Chiang, C. K. et al. Electrical-conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977).
Google Scholar
Phillips, P. & Wu, H. L. Localization and its absence—a new metallic state for conducting polymers. Science 252, 1805–1812 (1991).
Google Scholar
Kohlman, R. S. et al. Limits for metallic conductivity in conducting polymers. Phys. Rev. Lett. 78, 3915–3918 (1997).
Google Scholar
Kang, K. et al. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat. Mater. 15, 896–902 (2016).
Google Scholar
Noriega, R. et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).
Google Scholar
Wang, Z. H., Li, C., Scherr, E. M., Macdiarmid, A. G. & Epstein, A. J. Three dimensionality of metallic states in conducting polymers: polyaniline. Phys. Rev. Lett. 66, 1745–1748 (1991).
Google Scholar
Jeon, D., Kim, J., Gallagher, M. C. & Willis, R. F. Scanning tunneling spectroscopic evidence for granular metallic conductivity in conducting polymeric polyaniline. Science 256, 1662–1664 (1992).
Google Scholar
Xie, J. et al. Intrinsic glassy-metallic transport in an amorphous coordination polymer. Nature 611, 479–484 (2022).
Google Scholar
Bubnova, O. et al. Semi-metallic polymers. Nat. Mater. 13, 190–194 (2014).
Google Scholar
Lee, K. et al. Metallic transport in polyaniline. Nature 441, 65–68 (2006).
Google Scholar
Tang, H. et al. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 611, 271–277 (2022).
Google Scholar
Podzorov, V. Conjugated polymers: long and winding polymeric roads. Nat. Mater. 12, 947–948 (2013).
Google Scholar
Brondijk, J. J. et al. Two-dimensional charge transport in disordered organic semiconductors. Phys. Rev. Lett. 109, 056601 (2012).
Google Scholar
Basescu, N. et al. High electrical-conductivity in doped polyacetylene. Nature 327, 403–405 (1987).
Google Scholar
Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).
Google Scholar
Osterbacka, R., An, C. P., Jiang, X. M. & Vardeny, Z. V. Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. Science 287, 839–842 (2000).
Google Scholar
Jin, E. Q. et al. Two-dimensional sp(2) carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017).
Google Scholar
Liu, W. et al. A two-dimensional conjugated aromatic polymer via C-C coupling reaction. Nat. Chem. 9, 563–570 (2017).
Google Scholar
Gutzler, R. & Perepichka, D. F. π-Electron conjugation in two dimensions. J. Am. Chem. Soc. 135, 16585–16594 (2013).
Google Scholar
Jing, Y. & Heine, T. Making 2D topological polymers a reality. Nat. Mater. 19, 823–824 (2020).
Google Scholar
Springer, M. A., Liu, T. J., Kuc, A. & Heine, T. Topological two-dimensional polymers. Chem. Soc. Rev. 49, 2007–2019 (2020).
Google Scholar
Galeotti, G. et al. Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. Nat. Mater. 19, 874–880 (2020).
Google Scholar
Wang, M. et al. Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers. Nat. Mater. 22, 880–887 (2023).
Google Scholar
Liu, K. J. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019).
Google Scholar
Zhang, T. et al. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nat. Commun. 10, 4225 (2019).
Google Scholar
Tan, K. T. et al. Covalent organic frameworks. Nat. Rev. Methods Primers 3, 1 (2023).
Google Scholar
Qi, H. Y. et al. Near-atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer. Sci. Adv. 6, eabb5976 (2020).
Google Scholar
Galvao, D. S., Dossantos, D. A., Laks, B., Demelo, C. P. & Caldas, M. J. Role of disorder in the conduction mechanism of polyanilines. Phys. Rev. Lett. 63, 786–789 (1989).
Google Scholar
Krinichnyi, V. I. Dynamics of spin charge carriers in polyaniline. Appl. Phys. Rev. 1, 021305 (2014).
Google Scholar
Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008).
Google Scholar
Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012).
Google Scholar
Cvitkovic, A., Ocelic, N. & Hillenbrand, R. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Opt. Express 15, 8550–8565 (2007).
Google Scholar
Madsen, G. K. H., Carrete, J. & Verstraete, M. J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2018).
Google Scholar
Liu, S. H. et al. Two-dimensional mesoscale-ordered conducting polymers. Angew. Chem. Int. Edit. 55, 12516–12521 (2016).
Google Scholar
Kohlman, R. S. et al. Inhomogeneous insulator-metal transition in conducting polymers. Synthetic Met 84, 709–714 (1997).
Google Scholar
Kohlman, R. S., Joo, J., Min, Y. G., MacDiarmid, A. G. & Epstein, A. J. Crossover in electrical frequency response through an insulator-metal transition. Phys. Rev. Lett. 77, 2766–2769 (1996).
Google Scholar
Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).
Google Scholar
Wang, X. et al. High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Sci. Adv. 4, eaat5780 (2018).
Google Scholar
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).
Google Scholar
Blochl, P. E. Projector augmented-wave method. Phys. Rev. B. 50, 17953–17979 (1994).
Google Scholar
Perdew, J. P. et al. Atoms, molecules, solids, and surfaces—applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 46, 6671–6687 (1992).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google Scholar
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
Google Scholar
Chang, T., Foster, D. & Kahn, A. An intensity standard for electron paramagnetic resonance using chromium-doped corundum (Al2O3: Cr3+). J. Res. Natl Bur. Stand. 83, 133–164 (1977).
Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).
Google Scholar
Maissen, C., Chen, S., Nikulina, E., Govyadinov, A. & Hillenbrand, R. Probes for ultrasensitive THz nanoscopy. ACS Photonics 6, 1279–1288 (2019).
Google Scholar
Schnell, M., Carney, P. S. & Hillenbrand, R. Synthetic optical holography for rapid nanoimaging. Nat. Commun. 5, 3499 (2014).
Google Scholar
Yuan, Q. et al. Thin film structure of tetraceno[2,3-b]thiophene characterized by grazing incidence X-ray scattering and near-edge X-ray absorption fine structure analysis. J. Am. Chem. Soc. 130, 3502–3508 (2008).
Google Scholar
Talnack, F. et al. Thermal behavior and polymorphism of 2,9-didecyldinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene thin films. Mol. Syst. Des. Eng. 7, 507–519 (2022).
Google Scholar
Aradi, B., Hourahine, B. & Frauenheim, T. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A. 111, 5678–5684 (2007).
Google Scholar
Gaus, M., Goez, A. & Elstner, M. Parametrization and benchmark of DFTB3 for organic molecules. J. Chem. Theory Comput. 9, 338–354 (2013).
Google Scholar
Lu, X. Y., Gaus, M., Elstner, M. & Cui, Q. Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications. J. Phys. Chem. B. 119, 1062–1082 (2015).
Google Scholar