Chiang, C. K. et al. Electrical-conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977).
Google ScholarÂ
Phillips, P. & Wu, H. L. Localization and its absence—a new metallic state for conducting polymers. Science 252, 1805–1812 (1991).
Google ScholarÂ
Kohlman, R. S. et al. Limits for metallic conductivity in conducting polymers. Phys. Rev. Lett. 78, 3915–3918 (1997).
Google ScholarÂ
Kang, K. et al. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat. Mater. 15, 896–902 (2016).
Google ScholarÂ
Noriega, R. et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).
Google ScholarÂ
Wang, Z. H., Li, C., Scherr, E. M., Macdiarmid, A. G. & Epstein, A. J. Three dimensionality of metallic states in conducting polymers: polyaniline. Phys. Rev. Lett. 66, 1745–1748 (1991).
Google ScholarÂ
Jeon, D., Kim, J., Gallagher, M. C. & Willis, R. F. Scanning tunneling spectroscopic evidence for granular metallic conductivity in conducting polymeric polyaniline. Science 256, 1662–1664 (1992).
Google ScholarÂ
Xie, J. et al. Intrinsic glassy-metallic transport in an amorphous coordination polymer. Nature 611, 479–484 (2022).
Google ScholarÂ
Bubnova, O. et al. Semi-metallic polymers. Nat. Mater. 13, 190–194 (2014).
Google ScholarÂ
Lee, K. et al. Metallic transport in polyaniline. Nature 441, 65–68 (2006).
Google ScholarÂ
Tang, H. et al. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 611, 271–277 (2022).
Google ScholarÂ
Podzorov, V. Conjugated polymers: long and winding polymeric roads. Nat. Mater. 12, 947–948 (2013).
Google ScholarÂ
Brondijk, J. J. et al. Two-dimensional charge transport in disordered organic semiconductors. Phys. Rev. Lett. 109, 056601 (2012).
Google ScholarÂ
Basescu, N. et al. High electrical-conductivity in doped polyacetylene. Nature 327, 403–405 (1987).
Google ScholarÂ
Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).
Google ScholarÂ
Osterbacka, R., An, C. P., Jiang, X. M. & Vardeny, Z. V. Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. Science 287, 839–842 (2000).
Google ScholarÂ
Jin, E. Q. et al. Two-dimensional sp(2) carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017).
Google ScholarÂ
Liu, W. et al. A two-dimensional conjugated aromatic polymer via C-C coupling reaction. Nat. Chem. 9, 563–570 (2017).
Google ScholarÂ
Gutzler, R. & Perepichka, D. F. π-Electron conjugation in two dimensions. J. Am. Chem. Soc. 135, 16585–16594 (2013).
Google ScholarÂ
Jing, Y. & Heine, T. Making 2D topological polymers a reality. Nat. Mater. 19, 823–824 (2020).
Google ScholarÂ
Springer, M. A., Liu, T. J., Kuc, A. & Heine, T. Topological two-dimensional polymers. Chem. Soc. Rev. 49, 2007–2019 (2020).
Google ScholarÂ
Galeotti, G. et al. Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. Nat. Mater. 19, 874–880 (2020).
Google ScholarÂ
Wang, M. et al. Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers. Nat. Mater. 22, 880–887 (2023).
Google ScholarÂ
Liu, K. J. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019).
Google ScholarÂ
Zhang, T. et al. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nat. Commun. 10, 4225 (2019).
Google ScholarÂ
Tan, K. T. et al. Covalent organic frameworks. Nat. Rev. Methods Primers 3, 1 (2023).
Google ScholarÂ
Qi, H. Y. et al. Near-atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer. Sci. Adv. 6, eabb5976 (2020).
Google ScholarÂ
Galvao, D. S., Dossantos, D. A., Laks, B., Demelo, C. P. & Caldas, M. J. Role of disorder in the conduction mechanism of polyanilines. Phys. Rev. Lett. 63, 786–789 (1989).
Google ScholarÂ
Krinichnyi, V. I. Dynamics of spin charge carriers in polyaniline. Appl. Phys. Rev. 1, 021305 (2014).
Google ScholarÂ
Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008).
Google ScholarÂ
Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012).
Google ScholarÂ
Cvitkovic, A., Ocelic, N. & Hillenbrand, R. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Opt. Express 15, 8550–8565 (2007).
Google ScholarÂ
Madsen, G. K. H., Carrete, J. & Verstraete, M. J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2018).
Google ScholarÂ
Liu, S. H. et al. Two-dimensional mesoscale-ordered conducting polymers. Angew. Chem. Int. Edit. 55, 12516–12521 (2016).
Google ScholarÂ
Kohlman, R. S. et al. Inhomogeneous insulator-metal transition in conducting polymers. Synthetic Met 84, 709–714 (1997).
Google ScholarÂ
Kohlman, R. S., Joo, J., Min, Y. G., MacDiarmid, A. G. & Epstein, A. J. Crossover in electrical frequency response through an insulator-metal transition. Phys. Rev. Lett. 77, 2766–2769 (1996).
Google ScholarÂ
Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).
Google ScholarÂ
Wang, X. et al. High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Sci. Adv. 4, eaat5780 (2018).
Google ScholarÂ
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).
Google ScholarÂ
Blochl, P. E. Projector augmented-wave method. Phys. Rev. B. 50, 17953–17979 (1994).
Google ScholarÂ
Perdew, J. P. et al. Atoms, molecules, solids, and surfaces—applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 46, 6671–6687 (1992).
Google ScholarÂ
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google ScholarÂ
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
Google ScholarÂ
Chang, T., Foster, D. & Kahn, A. An intensity standard for electron paramagnetic resonance using chromium-doped corundum (Al2O3: Cr3+). J. Res. Natl Bur. Stand. 83, 133–164 (1977).
Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).
Google ScholarÂ
Maissen, C., Chen, S., Nikulina, E., Govyadinov, A. & Hillenbrand, R. Probes for ultrasensitive THz nanoscopy. ACS Photonics 6, 1279–1288 (2019).
Google ScholarÂ
Schnell, M., Carney, P. S. & Hillenbrand, R. Synthetic optical holography for rapid nanoimaging. Nat. Commun. 5, 3499 (2014).
Google ScholarÂ
Yuan, Q. et al. Thin film structure of tetraceno[2,3-b]thiophene characterized by grazing incidence X-ray scattering and near-edge X-ray absorption fine structure analysis. J. Am. Chem. Soc. 130, 3502–3508 (2008).
Google ScholarÂ
Talnack, F. et al. Thermal behavior and polymorphism of 2,9-didecyldinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene thin films. Mol. Syst. Des. Eng. 7, 507–519 (2022).
Google ScholarÂ
Aradi, B., Hourahine, B. & Frauenheim, T. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A. 111, 5678–5684 (2007).
Google ScholarÂ
Gaus, M., Goez, A. & Elstner, M. Parametrization and benchmark of DFTB3 for organic molecules. J. Chem. Theory Comput. 9, 338–354 (2013).
Google ScholarÂ
Lu, X. Y., Gaus, M., Elstner, M. & Cui, Q. Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications. J. Phys. Chem. B. 119, 1062–1082 (2015).
Google ScholarÂ

